Generalized Jordan-Wigner transformations.

نویسندگان

  • C D Batista
  • G Ortiz
چکیده

We introduce a new spin-fermion mapping, for arbitrary spin S generating the SU(2) group algebra, that constitutes a natural generalization of the Jordan-Wigner transformation for S = 1/2. The mapping, valid for regular lattices in any spatial dimension d, serves to unravel hidden symmetries. We illustrate the power of the transformation by finding exact solutions to lattice models previously unsolved by standard techniques. We also show the existence of the Haldane gap in S = 1 bilinear nearest-neighbor Heisenberg spin chains and discuss the relevance of the mapping to models of strongly correlated electrons. Moreover, we present a general spin-anyon mapping for the case d < or = 2.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linear Canonical Transformations and Quantum Phase: A unified canonical and algebraic approach

The algebra of generalized linear quantum canonical transformations is examined in the perspective of Schwinger’s unitary-canonical operator basis. Formulation of the quantum phase problem within the theory of quantum canonical transformations and in particular with the generalized quantum action-angle phase space formalism is established and it is shown that the conceptual foundation of the qu...

متن کامل

Dualities and the Unitary Representations of Non - compact Groups and Supergroups : Wigner versus Dirac

I review the relationship between AdS/CFT ( anti-de Sitter / conformal field theory) dualities and the general theory of positive energy unitary representations of non-compact space-time groups and supergroups. I show , in particular, how one can go from the manifestly unitary compact basis of the lowest weight ( positive energy) representations of the conformal group ( Wigner picture) to the m...

متن کامل

On p-semilinear transformations

In this paper, we introduce $p$-semilinear transformations for linear algebras over a field ${bf F}$ of positive characteristic $p$, discuss initially the elementary properties of $p$-semilinear transformations, make use of it to give some characterizations of linear algebras over a field ${bf F}$ of positive characteristic $p$. Moreover, we find a one-to-one correspondence between $p$-semiline...

متن کامل

On Jordan left derivations and generalized Jordan left derivations of matrix rings

Abstract. Let R be a 2-torsion free ring with identity. In this paper, first we prove that any Jordan left derivation (hence, any left derivation) on the full matrix ringMn(R) (n 2) is identically zero, and any generalized left derivation on this ring is a right centralizer. Next, we show that if R is also a prime ring and n 1, then any Jordan left derivation on the ring Tn(R) of all n×n uppe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review letters

دوره 86 6  شماره 

صفحات  -

تاریخ انتشار 2001